KNN-based Kalman filter: An efficient and non-stationary method for Gaussian process regression

نویسندگان

  • Yali Wang
  • Brahim Chaib-draa
چکیده

The traditional Gaussian process (GP) regression is often deteriorated when the data set is large-scale and/or non-stationary. To address these challenging data properties, we propose a K-Nearest-Neighbor-based Kalman filter for Gaussian process regression (KNN-KFGP). Firstly, we design a test-inputdriven KNN mechanism to group the training set into a number of small collections. Secondly, we use the latent function values of these collections as the unknown states and then construct a novel state space model with GP prior. Thirdly, we explore Kalman filter on this state space model to efficiently filter out the latent function values for prediction. As a result, our KNN-KFGP framework can effectively alleviate the heavy computation load of GP with recursive Bayesian inference, especially when the data set is large-scale. Moreover, our KNN mechanism helps each test point to find its strongly-correlated local training subset, and thus our KNN-KFGP can model non-stationarity in a flexible manner. Finally, we compare our KNNKFGP to several related works and show its superior performance on a number of synthetic and real-world data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A KNN Based Kalman Filter Gaussian Process Regression

The standard Gaussian process (GP) regression is often intractable when a data set is large or spatially nonstationary. In this paper, we address these challenging data properties by designing a novel K nearest neighbor based Kalman filter Gaussian process (KNN-KFGP) regression. Based on a state space model established by the KNN driven data grouping, our KNN-KFGP recursively filters out the la...

متن کامل

IMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY

Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...

متن کامل

Real Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation

Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...

متن کامل

Design of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter

This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2016